

Reaction to fire test report

Test standard: Ad-hoc test based off ISO 13785-1:2002

Test sponsor: Cladding Safety Victoria (CSV)

System: A cassetted aluminium composite panel wall system

Job number: RTF230139

Test date: 27 November 2023 Revision: R2.0

Quality management

Revision	Date	Information about the report			
R2.0 21		Description	Initial issue		
	December 2023		Prepared by	Reviewed by	Authorised by
		Name	Jaxsen Lee	Mandeep Kamal	Steven Halliday
		Signature	Jelu	Takamel.	fllly

Contents

1.	Introduction		4
2.	Test spec	cimen	4
2.1	Schedule o	of components	4
3.	Test prod	cedure	7
4.	Test mea	asurements and results	8
5.	. Application of test results		
5.1 5.2 5.3	5.2 Variations from the tested specimen		13 13 13
Арре	endix A	14	
Арре	endix B	Photographs	17
Appe	endix C	Chemical analysis results	25

1. Introduction

This report documents the findings of the first of three ad-hoc reaction to fire tests on a cassetted aluminium composite panel (ACP) external wall system - performed on 27 November 2023. The test was based on ISO 13785-1:2002.

Warringtonfire performed the test at the request of the test sponsor listed in Table 1.

Table 1 Test sponsor details

Test sponsor	Address
Cladding Safety Victoria	717 Bourke Street Docklands VIC 3808
	Australia

2. Test specimen

2.1 Schedule of components

Table 2 describes the test specimen and lists the schedule of components. These were provided by the representatives of the test sponsor and surveyed by Warringtonfire. All measurements were done by Warringtonfire – unless indicated otherwise.

Detailed drawings of the test specimen are provided in Appendix A.

Table 2 Schedule of components

Item	Description	
Cladding		
1.	Item name	ACP panelling - cassetted
	Product	Vitrabond FR* Aluminium Composite Panel - 4 mm Dark Oak/Matte White with 0.5 mm skin.
		*Sample sheets were taken from older manufactured quarantined stock with a higher polyethylene content that is no longer in circulation which was received marked as 'Testing Only'.
	Manufacturer/supplier	Fairview
	Material	The material was nominated as panels consisting of two layers of aluminium sheets sandwiching a layer (core) with 45 % polyethylene (PE) and inorganic filler.
		Analysis conducted by the analytical centre of UNSW showed that the core consisted of polyethylene-vinyl acetate (PEVA) - found to be 43.9 % w/w - whilst the remainder of the material was found to be 45.3 % magnesium hydroxide, 6.1 % calcium carbonate and 4.8 % other inert material. Refer to Appendix C for more detailed results - Sample 23197-1, Oak.
	Size	As shown in Figure 8.
		Total thickness – 4.1 mm
		Skin thickness (both sides) – 0.5 mm Cassette depth – 150 mm
	Batch number	1609418
	Measured mass/unit area densities	Panel areal density – 6.9 kg/m²
2.	Item name	FR Plasterboard
	Product	CSR Gyprock 13 mm Fyrchek
	Manufacturer/supplier	CSR Gyprock
	Size	Measured board: 3000 mm × 1200 mm × 13 mm

Test standard: General accordance with ISO 13785-1:2002

Job number: RTF230139

Test sponsor: Cladding Safety Victoria (CSV)

Item	Description	
	Batch date	16/08/22
	Areal density (measured)	11.0 kg/m ²
3.	Item name	Backpan
	Product	0.9 mm thick Galvabond steel
	Supplier	BlueScope
	Size	Measured: 1160 mm wide x 3700 mm tall, 0.9 mm thick – in segments
Framii	ng	
4.	Item name	Test rig frame - 90 x 90 SHS and 200 x 90 PFC frame
	Size	90 mm × 90 mm × 5 mm thick and 200 mm × 90 mm × 10 mm thick – refer to Figure 7.
5.	Item name	Aluminium curtain wall transom/mullions (rectangular hollow sections) - framing
	Size	65 mm wide x 120 mm deep x 3 mm thick
		Total frame size: 120 mm deep x 1165 mm wide x 3705 mm tall
	Manufacturer/supplier	Capral Aluminium
6.	Item name	Aluminium angles - framing
	Size	20 mm wide × 30 mm deep × 3 mm thick
	Manufacturer/supplier	Rapid Aluminium
7.	Item name	Aluminium stiffener - framing
	Size	3 mm thick
	Manufacturer/supplier	Rapid Aluminium
8.	Item name	Internal side frame - steel
	Size	Studs and noggings: 90 mm deep x 36 mm wide x 0.55 BMT
	Installation	The steel framing members were riveted (item 17) to one another.
9.	Item name	Strap – 50 mm wide
	Size	Studs and noggings: 90 mm deep x 36 mm wide
	Installation	The steel framing members were riveted (item 17) to one another.
Smoke	e seal	
10.	Item name	Smoke seal
	Size	1 mm thick galvanised steel
	Manufacturer/supplier	Atlas Steel
Insula	tion	
11.	Item name	90 mm thick polyethylene terephthalate (PET) insulation
	Density	10 kg/m³
	Manufacturer/supplier	Pricewise Insulation
12.	Item name	50 mm thick aluminium - with fibre-glass mesh - foil faced rockwool insulation
	Density of core	40 kg/m ³
	Manufacturer/supplier	Rockwool Insulation Australia
Sealar	nt/Adhesive	
13.	Item name	Weathering sealant

Item	Description		
	Product type	Silicone sealant	
	Product name	PROSIL 41Im	
	Manufacturer/supplier	Admil Adhesives	
	Usage	Placed at ACP edges and over screw and rivet locations.	
Fixing	s		
14.	Item name	Wafer head screws – zinc coated steel	
	Size	10g × 16 mm long	
	Installation	Used to fix aluminium angles (item 6) to the aluminium frame (item 5) at 500 mm centres	
15.	Item name	Wafer head screws – zinc coated steel	
	Size	10g × 50 mm long	
	Installation	Used to fix ACP (item 1) to the aluminium stiffener (item 7) – four per corner.	
16.	Item name	Hex head tek screw – zinc coated steel	
	Size	12g × 16 mm long	
	Installation	Used to fix aluminium stiffeners (item 7) to themselves	
17.	Item name	Steel rivets	
	Size	Ø4 mm	
18.	Item name	Plasterboard screws	
	Size	6g x 32 mm long, bugle head, self-drilling screws	
19.	Item name	Fast-fix washers and pin weld	
	Size	115 mm × 3 mm pins and 25 mm × 25 mm fast fix washers.	
Install	Installation method		

Internal wall:

The test rig frame (item 4) was the main support for the test specimen, however, there were two C-purlin sections that acted as false slabs (200 mm tall). Steel stud framing (item 8) was installed between the C-purlins. PET insulation (item 11) was inserted within the steel framing (item 8) and was capped with 13 mm thick FR plasterboard (item 2) on the unexposed side and along the edges. The plasterboard was fixed with plasterboard screws (item 18) – max 300 mm centres on the periphery and 600 mm centres in-field.

External wall:

The external section of the wall system largely consisted of an aluminium extrusion framing system (item 5), galvanised steel sheet backpan (item 3) and ACP cassette system (item 1). The external wall was screw fixed using angles. The ACP cassettes were 150 mm deep and were connected to the aluminium extrusion framing (item 5) using aluminium angles (item 6) and aluminium stiffeners (item 7). The angles (item 6) were screw fixed to the extrusions, the aluminium sheeting riveted to the angles, and the ACP cassettes riveted to the aluminium sheets. Sealant (item 13) was used to seal open ACP edges, screw fixings and rivet locations.

The backpan (item 3) was screw fixed and riveted to the back of the aluminium extrusion framing (item 5). Foil faced insulation (item 12) was installed within the external wall. The insulation was held to the steel backpan (item 3) with the aid of fast-fix washers and pin combinations (item 19) – at ~600 mm centres - that were welded to the backpan. There was a 60 mm gap between the backpan and the internal wall studwork.

Job number: RTF230139 Revision: R2.0 Test sponsor: Cladding Safety Victoria (CSV) Page 6 of 30

3. Test procedure

Table 3 details the test procedure for this reaction to fire test.

Table 3 Test procedure

Table 5 Test procedure			
Item	Detail		
Statement of compliance	The ad-hoc test – which was based off ISO 13785-1:2002 - was performed to determine the reaction to fire performance of an external wall cladding when exposed to heat from a simulated external fire with flames impinging directly upo a façade. The test utilises a burner used in ISO 13785-1:2002 with the specimen mimicking the as-built construction of the façade.		
Sampling / specimen selection	The laboratory was not involved in sampling or selecting the test specimen for the reaction to fire test. The results obtained during the test only apply to the test samples as received		
	and tested by Warringtonfire.		
Test duration	60 minutes		
Ambient laboratory temperature	Start of the test	20 °C	
temperature	Minimum temperature	20 °C	
	Maximum temperature	24 °C	
Instrumentation and equipment	 Eight mineral insulated metal sheathed (MIMS) Type K thermocouples with an overall diameter of 1.5 mm with the measuring junction insulated from the sheath were positioned 60 mm in front of the face of the test specimen. Refer to Figure 1 (TC011 – TC018) for details on positioning. Ten mineral insulated metal sheathed (MIMS) Type K thermocouples with an overall diameter of 1.5 mm with the measuring junction insulated from the sheath were positioned inside the specimen at the centre of the cavity. Refer to Figure 1 (TC001 – TC010) for details on positioning. One mineral insulated metal sheathed (MIMS) Type K thermocouple with an overall diameter of 1.5 mm with the measuring junction insulated from the sheath was positioned on the face of ACP, 50 mm from the top edge. Refer to Figure 1 (TC019) for details on positioning. The incident heat flux on the top of the specimen in line with the front face of test specimen was measured using one Schmidt-Boelter type heat flux gauge 		
	 with a range of 0-50 kW/m². The fire source was a propane (95% purity) gas burner 1.2 m long × 0.1 m deep × 0.15 m tall. The burner was placed on the floor below the specimen with approximately 10 mm overlap with the ACP. 		
Test procedure	 At least two minutes of baseline data was collected prior to burner ignition. Temperature and heat flux data was collected at 5 s intervals. The heat output from the burner was held at 100 kW for the first 15 minutes of the test followed by 300 kW for the following 25 minutes of the test. The burner was then turned off and the specimen sprayed with water when excessive flaming was observed. 		
Test number	Test two of four.		
Variation between tests	The test was based off RTF220104 R1.0, R1 and RTF230111 R1.0. The test specimens for representation of an in-situ wall located at the in this test was considered a replica of those ACP used, i.e., variation to the percentage of fire-retarding materials in the core and the	or those tests were considered a e listed location. The tested specimen tests with the only variation being the f polyethylene in the core, presence	

Test standard: General accordance with ISO 13785-1:2002 Job number: RTF230139

Test sponsor: Cladding Safety Victoria (CSV)

4. Test measurements and results

The results from the tests are summarised below. Photographs of the specimen are included in Appendix B.

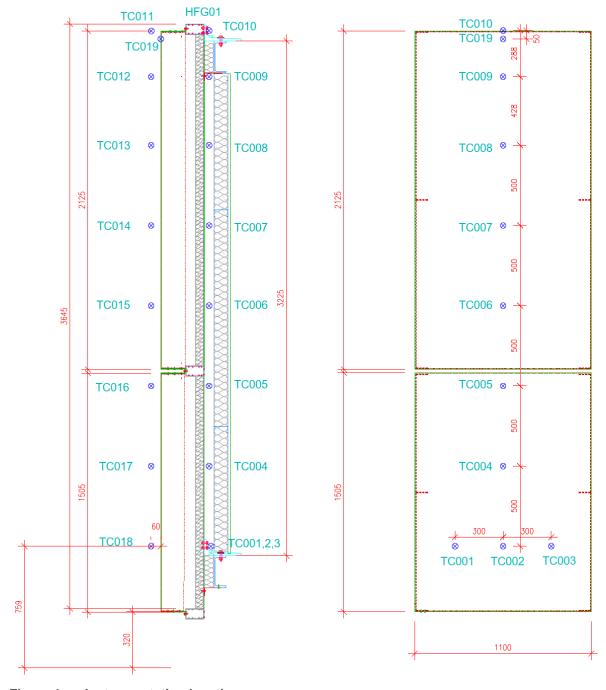


Figure 1 Instrumentation location

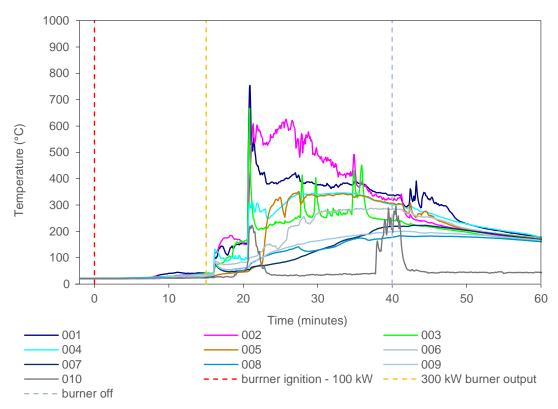


Figure 2 Internal temperature data collected by thermocouples placed within the cavity – between the internal and external segments of the specimen.

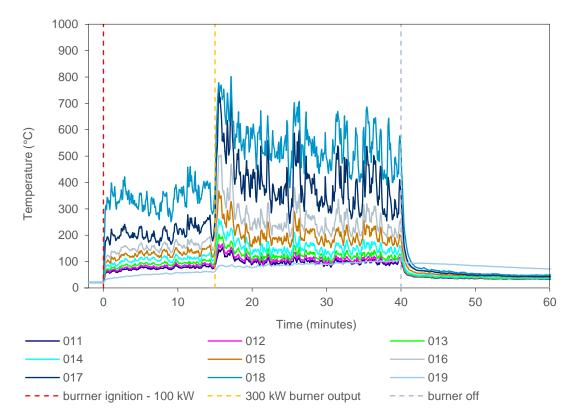


Figure 3 External temperature data collected by thermocouples placed 60 mm from the front face of the specimen.

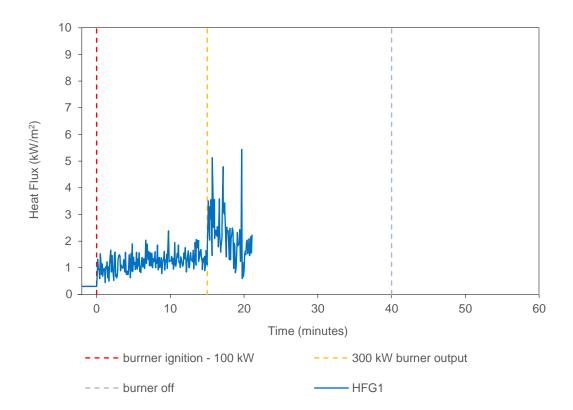


Figure 4 Heat flux data collected by heat flux gauge.

Note: At 21 minutes 7 seconds, the water cooling pipe became disconnected from the heat flux gauge.

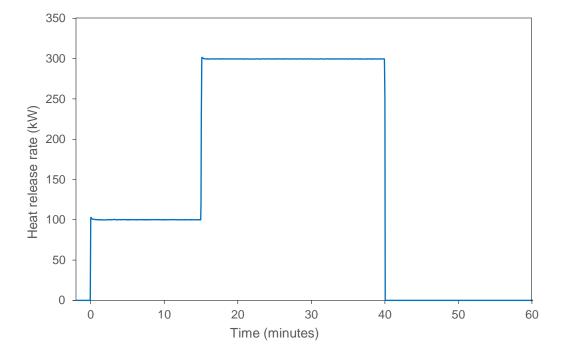


Figure 5 Heat release rate of burner.

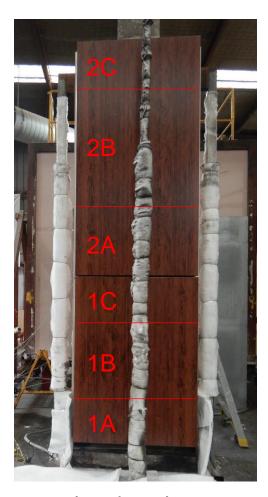


Figure 6 Designation for test specimen observations.

Table 4 shows the observations of any significant behaviour of the specimen during the test.

Video recordings were also taken of the test. A copy of the video recording is available upon request from the test sponsor or by contacting Cladding Safety Victoria. The video of the test should be viewed in conjunction the contents of this report.

Table 4 **Test observations**

Time S		O	Observation
		Section	Observation
Min	Sec		
-2	00	All	Data collection started.
0	00	All	The reaction to fire test was started with the burner ignited with a heat output set at 100 kW.
2	20	1A	The panel was becoming discoloured.
3	00	1A	Flaming debris was falling from the right side.
4	00	1A	Flaming debris fell from the right side and continued flaming for longer than 20 seconds.
5	00	1A	Flaming debris was falling from both sides.
6	50	1B	The panel was becoming discoloured.
9	00	1A	The quantity of flaming debris decreased.
15	00	All	The burner output was increased to 300 kW.
15	29	1A/1B	The panel skin was peeling off.
16	02	1A/1B/1C	A buildup of gas was released from the lower portion of the specimen.
16	50	1C	The panel was becoming discoloured.
18	30	All	The unexposed side of the specimen was flaming on the right edge for longer than 10 seconds.
19	20	All	The unexposed side of the specimen was flaming at the head for longer than 10 seconds.
20	35	All	A buildup of gas was released out from the sides of the specimen.
21	07	All	The water cooling pipe became disconnected from the heat flux gauge.
21	19	All	Significant flaming was present on the right side of the specimen, to a height of 2B.
22	09	2A	The corners of the panel were deforming outwards.
29	00	1C/2A	The join sustained flaming on the left side, which appeared to be independent of the burner.
40	00	All	The burner was switched off.
42	55	1A/2A	The panel was flaming at the edges.
44	10	1C/2A	Intermittent flaming was present in the join between the two panels.
45	55	All	External flaming had decreased, and smoke emissions had increased.
50	27	All	External flaming ceased.
60	00	All	The reaction to fire test ended.

Revision: R2.0

5. **Application of test results**

5.1 **Test limitations**

The results of these fire tests may be used to directly assess fire hazard, but it should be recognised that a single test method will not provide a full assessment of fire hazard under all fire conditions.

These results only relate to the behaviour of the specimen of the element of construction under the particular conditions of the test. They are not intended to be the sole criteria for assessing the potential fire performance of the element in use, and they do not necessarily reflect the actual behaviour in fires.

5.2 Variations from the tested specimen

This report details methods of construction, the test conditions and the results obtained when the specific element of construction described here was tested following the procedure outlined in Table 3. Any significant variation with respect to size, construction details, loads, stresses, edge or end conditions is not addressed by this report.

It is recommended that any proposed variation to the tested configuration should be referred to the test sponsor. They should then obtain appropriate documentary evidence of compliance from Warringtonfire or another accredited testing authority.

5.3 **Uncertainty of measurements**

Because of the nature of reaction to fire testing and the consequent difficulty in quantifying the uncertainty of measurements obtained from a reaction to fire test, it is not possible to provide a stated degree of accuracy of result.

Test standard: General accordance with ISO 13785-1:2002 Job number: RTF230139

Revision: R2.0 Test sponsor: Cladding Safety Victoria (CSV) Page 13 of 30

Appendix A Drawings of test assembly

The drawings of the test assembly in Figure 7 to Figure 10 were provided representatives of Warringtonfire. Dimensions, unless specified, are in mm.

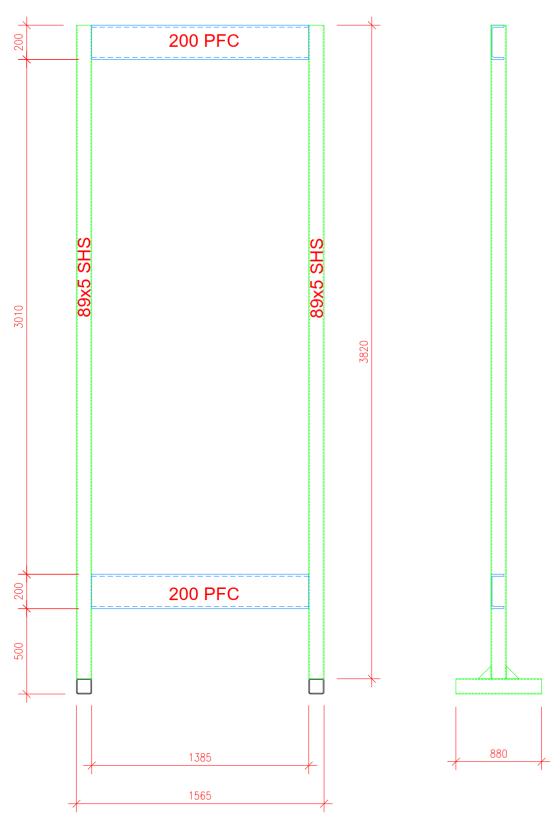


Figure 7 Elevation of rig support.

Test standard: General accordance with ISO 13785-1:2002 Job number: RTF230139

Test sponsor: Cladding Safety Victoria (CSV)

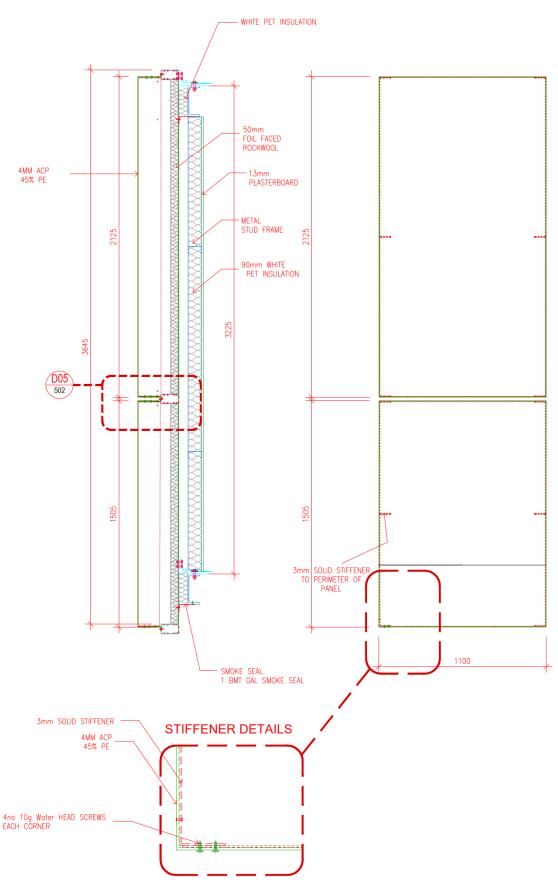


Figure 8 System assembly – Front and side view

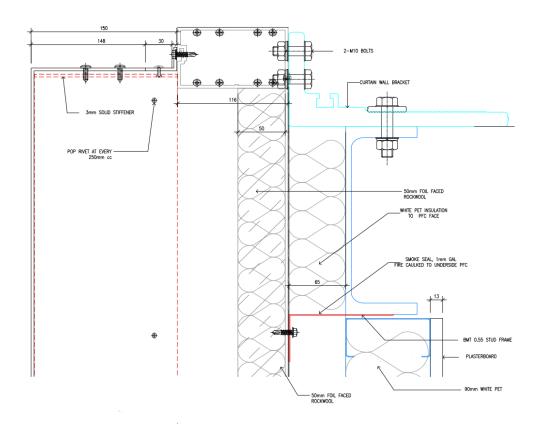


Figure 9 System assembly – top edge detail

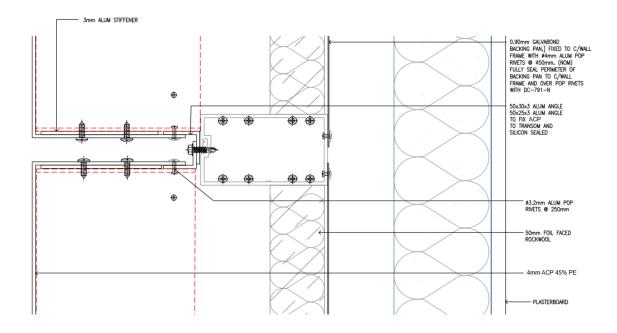


Figure 10 System assembly – middle join detail (D05)

Appendix B Photographs

Figure 11 The specimen before the reaction to fire test

Figure 12 The specimen before the reaction to fire test – unexposed side

Figure 13 The specimen 2 minutes 44 seconds into the test (burner output at 100 kW)

Figure 14 The specimen 8 minutes 35 seconds into the test (burner output at 100 kW)

Figure 15 The specimen 14 minutes 55 seconds into the test (burner output at 100 kW)

Figure 16 The specimen 16 minutes into the test (1 minute after burner output was changed to 300 kW)

Figure 17 The specimen 17 minutes 10 seconds into the test (2 minutes 10 seconds after burner output was changed to 300 kW)

Figure 18 The specimen 23 minutes 40 seconds into the test (8 minutes 40 seconds after burner output was changed to 300 kW)

Figure 19 The specimen 29 minutes 50 seconds into the test (14 minutes 50 seconds after burner output was changed to 300 kW)

Figure 20 The specimen 37 minutes 1 second into the test (22 minutes 1 second after burner output was changed to 300 kW)

Figure 21 The specimen 38 minutes into the test (23 minutes after burner output was changed to 300 kW)

Test standard: General accordance with ISO 13785-1:2002 Job number: RTF230139

Figure 22 The specimen 40 minutes 30 seconds into the test (30 seconds after burner was switched off)

Figure 23 The specimen 42 minutes 25 seconds into the test (2 minutes 25 seconds after burner was switched off)

Figure 24 The specimen at the end of the test

Figure 25 The specimen after the test – unexposed side

Appendix C Chemical analysis results

UNSW RESEARCH INFRASTRUCTURE

Chemical Consulting Laboratory

Mark Wainwright Analytical Centre UNSW Sydney NSW 2052 Australia

T: +61(2) 9348 1400 | E: ccl@unsw.edu.au
W: www.analytical.unsw.edu.au/contact-us/commercial-consulting
ABN 57 195 873 179 | CRICOS Provider Code 00098G

Test Report

Prepared by:

ANALYSIS OF CLADDING SAMPLES REF: UB8388

For

Company: Warrington Fire
Contact: Steven Halliday
Date: 17 October 2023

Project No: 23197

Prepared by: Afsaneh Khansari Approved by: Dominic D'Adam

COMMERCIAL-IN-CONFIDENCE

Any use of the Test Report, use of any part of it, use of the names University of New South Wales or UNSW, use of the name of any Unit of UNSW, or use of the name of the consultant in direct or indirect advertising or publicity is strictly forbidden.

Project No.: 23197 Chemical Consulting Laboratory - UNSW Page 1 of 6

This report shall not be reproduced, except in full, without written approval of the CCL

Test standard: General accordance with ISO 13785-1:2002 Job number: RTF230139

Job number: RTF230139

Test sponsor: Cladding Safety Victoria (CSV)

Revision: R2.0
Page 25 of 30

Analysis of Cladding Samples RFF: UB8388

1. SAMPLES

One plastic sachet containing two ACP cores was received for analysis. The samples were identified as follows:

CCL sample coding	Client sample coding
23197-1	Oak
23197-2	Silver

CCL has been asked to identify the polymer and the filler (s) in the samples by FT/IR, quantitate and identify the mineral filler in the samples and classify them in accordance with the ICA cladding scheme.

2. METHODOLOGY AND RESULTS

The aluminium metal was removed from the ACPs cladding polymer, and the flat surface of the polymer samples was abraded to remove any surface adhesive. The surface of each sample was analysed directly by FTIR. The FT-IR spectrum is presented in Figures 1-2.

The core of each sample was then ashed to determine its percentage mineral content (Table 1). If sufficient (>0.5 g) ash had been produced it was analysed for elemental composition by X ray fluorescence spectroscopy. Results are presented in Table 2.

Table 1 Ash content of samples.

Sample coding	Ash content (w/w%)
23197-1	39.5
23197-2	21.6

Project No.: 23197

Chemical Consulting Laboratory - UNSW

Page 2 of 6

This report shall not be reproduced, except in full, without written approval of the CCL

Test standard: General accordance with ISO 13785-1:2002 Job number: RTF230139

Test sponsor: Cladding Safety Victoria (CSV)

Table 2 Elemental composition of 23197-1

Element Oxide wt.%	23197-1
Na₂O	0.45
MgO	79.26
Al ₂ O ₃	0.39
SiO ₂	4.87
P ₂ O ₅	0.12
SO ₃	0.26
K ₂ O	0.04
CaO	8.66
TiO ₂	2.24
V ₂ O ₅	0.01
Cr ₂ O ₃	<0.01
Mn ₃ O ₄	0.04
Fe ₂ O ₃	0.55
NiO	<0.01
CuO	<0.01
ZnO	0.01
Sr0	<0.01
ZrO ₂	<0.01
BaO	0.09
HfO ₂	<0.01
PbO	<0.01
L.O.I.	ND

NOTE: (i) L.O.I.= loss on ignition at 1,050 °C.

(ii) ND = not determined

Project No.: 23197

Chemical Consulting Laboratory - UNSW

Page 3 of 6

This report shall not be reproduced, except in full, without written approval of the CCL

3. CONCLUSIONS

The cladding sample #1 consisted of consisted of 45.3% magnesium hydroxide, 6.1% calcium carbonate, 4.8% other inert material and approximately 43.9% polyethylene/EVA copolymer.

The cladding sample #1, is classified as ICA category A.

The cladding sample#2 consisted of consisted of 21.6% inert material and approximately 78.4% polyethylene/EVA copolymer.

The cladding sample #2, is classified as ICA category A.

The ICA Classification assigned is correct as per the September 2020 revision of the ICA Guidelines.

The calculation for magnesium hydroxide content assumes that all magnesium found is present as the hydroxide. The calculation for calcium carbonate content assumes that all calcium found is present as calcium carbonate.

The reader is reminded that we can only analyse and classify the content of samples actually presented to us. We can offer no guarantee that this composition or classification is valid for cladding as a whole, because some types of cladding can be inhomogeneous, and a sample may not be representative of the cladding as a whole. Anyone using our results should consider these sampling issues and uncertainties before they generalise the results we present to anybody of cladding as a whole.

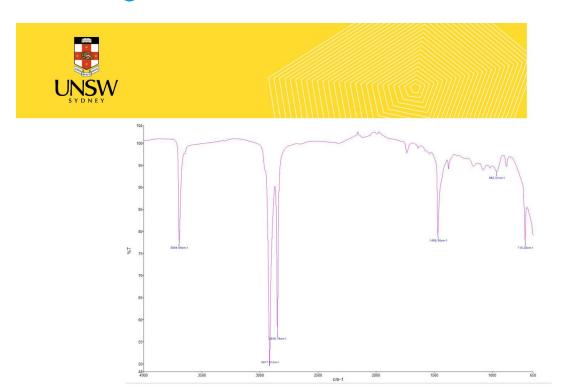
Afsaneh Khansari (PhD) **Technical Officer Chemical Consulting Laboratory** Mark Wainwright Analytical Centre, UNSW 17 October 2023

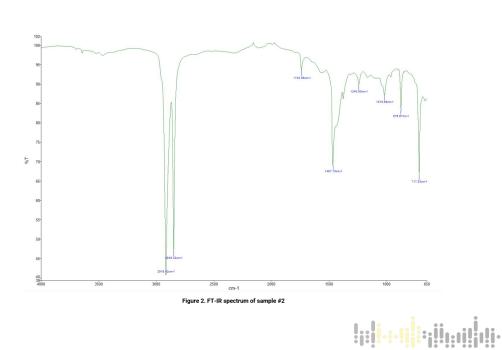
Project No.: 23197 **Chemical Consulting Laboratory - UNSW**

This report shall not be reproduced, except in full, without written approval of the CCL

Test standard: General accordance with ISO 13785-1:2002 Job number: RTF230139

Revision: R2.0 Test sponsor: Cladding Safety Victoria (CSV) Page 28 of 30




Figure 1. FT-IR spectrum of Sample #1

Project No.: 23197

Chemical Consulting Laboratory - UNSW

Page 5 of 6

This report shall not be reproduced, except in full, without written approval of the CCL

This report shall not be reproduced, except in full, without written approval of the CCL

Page 6 of 6

Chemical Consulting Laboratory - UNSW

Test standard: General accordance with ISO 13785-1:2002 Job number: RTF230139

Project No.: 23197

Revision: R2.0 Test sponsor: Cladding Safety Victoria (CSV) Page 29 of 30

Warringtonfire Australia Pty Ltd ABN 81 050 241 524

Perth

Suite 4.01, 256 Adelaide Terrace Perth WA 6000 Australia T: +61 8 9382 3844

Sydney

Suite 802, Level 8, 383 Kent Street Sydney NSW 2000 Australia T: +61 2 9211 4333 Canberra

Unit 10, 71 Leichhardt Street Kingston ACT 2604 Australia T: +61 2 6260 8488

Brisbane

Suite B, Level 6, 133 Mary Street Brisbane Qld 4000 Australia T: +61 7 3238 1700 Melbourne

Level 4, 152 Elizabeth Street Melbourne Vic 3000 Australia T: +61 3 9767 1000

Melbourne - NATA accredited laboratory

409-411 Hammond Road Dandenong South Vic 3175 Australia T: +61 3 9767 1000

General conditions of use

The data, methodologies, calculations and results documented in this report specifically relate to the tested specimen/s and must not be used for any other purpose. This report may only be reproduced in full. Extracts or abridgements must not be published without permission from Warringtonfire.

All work and services carried out by Warringtonfire are subject to, and conducted in accordance with our standard terms and conditions.